Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.273
Filtrar
1.
Cells ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38607063

RESUMO

Wound healing is a dynamic and complex process, characterized by the coordinated activities of multiple cell types, each with distinct roles in the stages of hemostasis, inflammation, proliferation, and remodeling. The cells of the immune system not only act as sentinels to monitor the skin and promote homeostasis, but they also play an important role in the process of skin wound repair. Skin-resident and recruited immune cells release cytokines and growth factors that promote the amplification of the inflammatory process. They also work with non-immune cells to remove invading pathogens and debris, as well as guide the regeneration of damaged host tissues. Dysregulation of the immune system at any stage of the process may lead to a prolongation of the inflammatory phase and the development of a pathological condition, such as a chronic wound. The present review aims to summarize the roles of different immune cells, with special emphasis on the different stages of the wound healing process.


Assuntos
Pele , Cicatrização , Humanos , Cicatrização/fisiologia , Pele/patologia , Inflamação/patologia , Citocinas , Sistema Imunitário/metabolismo
2.
Cells ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607083

RESUMO

The neuro-immune axis has a crucial function both during physiological and pathological conditions. Among the immune cells, myeloid-derived suppressor cells (MDSCs) exert a pivotal role in regulating the immune response in many pathological conditions, influencing neuroinflammation and neurodegenerative disease progression. In chronic neuroinflammation, MDSCs could lead to exacerbation of the inflammatory state and eventually participate in the impairment of cognitive functions. To have a complete overview of the role of MDSCs in neurodegenerative diseases, research on PubMed for articles using a combination of terms made with Boolean operators was performed. According to the search strategy, 80 papers were retrieved. Among these, 44 papers met the eligibility criteria. The two subtypes of MDSCs, monocytic and polymorphonuclear MDSCs, behave differently in these diseases. The initial MDSC proliferation is fundamental for attenuating inflammation in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), but not in amyotrophic lateral sclerosis (ALS), where MDSC expansion leads to exacerbation of the disease. Moreover, the accumulation of MDSC subtypes in distinct organs changes during the disease. The proliferation of MDSC subtypes occurs at different disease stages and can influence the progression of each neurodegenerative disorder differently.


Assuntos
Células Supressoras Mieloides , Doenças Neurodegenerativas , Humanos , Células Supressoras Mieloides/patologia , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/patologia , Inflamação/patologia , Proliferação de Células
3.
Cells ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607084

RESUMO

Subacute spinal cord injury (SCI) displays a complex pathophysiology associated with pro-inflammation and ensuing tissue damage. Microglia, the resident innate immune cells of the CNS, in concert with infiltrating macrophages, are the primary contributors to SCI-induced inflammation. However, subpopulations of activated microglia can also possess immunomodulatory activities that are essential for tissue remodeling and repair, including the production of anti-inflammatory cytokines and growth factors that are vital for SCI recovery. Recently, reports have provided convincing evidence that sex-dependent differences exist in how microglia function during CNS pathologies and the extent to which these cells contribute to neurorepair and endogenous recovery. Herein we employed flow cytometry and immunohistochemical methods to characterize the phenotype and population dynamics of activated innate immune cells within the injured spinal cord of age-matched male and female rats within the first week (7 days) following thoracic SCI contusion. This assessment included the analysis of pro- and anti-inflammatory markers, as well as the expression of critical immunomodulatory kinases, including P38 MAPK, and transcription factors, such as NFκB, which play pivotal roles in injury-induced inflammation. We demonstrate that activated microglia from the injured spinal cord of female rats exhibited a significantly diminutive pro-inflammatory response, but enhanced anti-inflammatory activity compared to males. These changes included lower levels of iNOS and TLR4 expression but increased levels of ARG-1 and CD68 in females after SCI. The altered expression of these markers is indicative of a disparate secretome between the microglia of males and females after SCI and that the female microglia possesses higher phagocytic capabilities (increased CD68). The examination of immunoregulatory kinases and transcription factors revealed that female microglia had higher levels of phosphorylated P38Thr180/Tyr182 MAPK and nuclear NFκB pp50Ser337 but lower amounts of nuclear NFκB pp65Ser536, suggestive of an attenuated pro-inflammatory phenotype in females compared to males after SCI. Collectively, this work provides novel insight into some of the sex disparities that exist in the innate immune response after SCI and indicates that sex is an important variable when designing and testing new therapeutic interventions or interpretating positive or negative responses to an intervention.


Assuntos
Traumatismos da Medula Espinal , Ratos , Animais , Masculino , Feminino , Traumatismos da Medula Espinal/patologia , Imunidade Inata , Inflamação/patologia , Anti-Inflamatórios , Fatores de Transcrição
4.
Front Immunol ; 15: 1382661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558797

RESUMO

Introduction: BTBD8 has been identified as a susceptible gene for inflammatory bowel diseases (IBD). However, the function of BTBD8 in normal development and IBD pathogenesis remains unknown. Methods: We administered drinking water with 3% dextran sodium sulfate (DSS) to wild-type (WT) and Btbd8 knockout (KO) mice for seven consecutive days to induce IBD. Subsequently, we further examined whether Btbd8 KO affects intestinal barrier and inflammation. Results: We demonstrated that Btbd8 deficiency partially protects mice from DSS-induced IBD, even though no obvious phenotypes were observed in Btbd8 KO mice. Btbd8 deletion leads to strengthened tight junctions between intestinal epithelial cells, elevated intestinal stem cell activity, and enhanced mucus layer. All these three mechanisms work together to improve the intestinal barrier integrity in Btbd8 KO mice. In addition, Btbd8 deficiency mitigates inflammation by reducing the expression of IL-1ß and IL-6 by macrophages. Discussion: Our studies validate the crucial role of Btbd8 in IBD pathogenesis, and reveal that Btbd8 deficiency may ameliorate DSS-induced IBD through improving the intestinal barrier integrity, as well as suppressing inflammatory response mediated by macrophages. These findings suggest that Btbd8 could be a promising therapeutic target for the treatment of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , 60435 , Colite/induzido quimicamente , Colite/genética , Colite/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Intestinos/patologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia
5.
Cell ; 187(8): 2010-2028.e30, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38569542

RESUMO

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.


Assuntos
Colite Ulcerativa , Colite , Animais , Humanos , Camundongos , Colite/metabolismo , Colite/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Hibridização in Situ Fluorescente/métodos , Inflamação/metabolismo , Inflamação/patologia , Comunicação Celular , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia
6.
Science ; 384(6691): 66-73, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574138

RESUMO

Asthma is deemed an inflammatory disease, yet the defining diagnostic feature is mechanical bronchoconstriction. We previously discovered a conserved process called cell extrusion that drives homeostatic epithelial cell death when cells become too crowded. In this work, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion in both mice and humans. Although relaxing the airways with the rescue treatment albuterol did not affect these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these features. Our findings show that bronchoconstriction causes epithelial damage and inflammation by excess crowding-induced cell extrusion and suggest that blocking epithelial extrusion, instead of the ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.


Assuntos
Asma , Brônquios , Broncoconstrição , Animais , Humanos , Camundongos , Asma/patologia , Asma/fisiopatologia , Broncoconstrição/efeitos dos fármacos , Inflamação/patologia , Transdução de Sinais , Canais Iônicos/antagonistas & inibidores , Lisofosfolipídeos/antagonistas & inibidores , Esfingosina/análogos & derivados , Esfingosina/antagonistas & inibidores , Brônquios/patologia , Brônquios/fisiopatologia
7.
J Transl Med ; 22(1): 328, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566145

RESUMO

BACKGROUND: Psoriasis is a chronic immune-mediated skin condition. Although biologic treatments are effective in controlling psoriasis, some patients do not respond or lose response to these therapies. Thus, new strategies for psoriasis treatment are still urgently needed. Double-negative T cells (DNT) play a significant immunoregulatory role in autoimmune diseases. In this study, we aimed to evaluate the protective effect of DNT in psoriasis and explore the underlying mechanism. METHODS: We conducted a single adoptive transfer of DNT into an imiquimod (IMQ)-induced psoriasis mouse model through tail vein injection. The skin inflammation and IL-17A producing γδ T cells were evaluated. RESULTS: DNT administration significantly reduced the inflammatory response in mouse skin, characterized by decreased skin folds, scales, and red patches. After DNT treatment, the secretion of IL-17A by RORc+ γδlow T cells in the skin was selectively suppressed, resulting in an amelioration of skin inflammation. Transcriptomic data suggested heightened expression of NKG2D ligands in γδlow T cells within the mouse model of psoriasis induced by IMQ. When blocking the NKG2D ligand and NKG2D (expressed by DNT) interaction, the cytotoxic efficacy of DNT against RORc+IL17A+ γδlow T cells was attenuated. Using Ccr5-/- DNT for treatment yielded evidence that DNT migrates into inflamed skin tissue and fails to protect IMQ-induced skin lesions. CONCLUSIONS: DNT could migrate to inflamed skin tissue through CCR5, selectively inhibit IL-17-producing γδlow T cells and finally ameliorate mouse psoriasis. Our study provides feasibility for using immune cell therapy for the prevention and treatment of psoriasis in the clinic.


Assuntos
Interleucina-17 , Psoríase , Humanos , Camundongos , Animais , Interleucina-17/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Psoríase/terapia , Pele/patologia , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Inflamação/patologia , Linfócitos T/metabolismo , Modelos Animais de Doenças
8.
J Transl Med ; 22(1): 327, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566233

RESUMO

BACKGROUND: Regulatory T cells (Tregs) are crucial in maintaining immune homeostasis and preventing autoimmunity and inflammation. A proportion of Treg cells can lose Foxp3 expression and become unstable under inflammation conditions. The precise mechanisms underlying this phenomenon remain unclear. METHODS: The PI16 gene knockout mice (PI16fl/flFoxp3Cre) in Treg were constructed, and the genotypes were identified. The proportion and phenotypic differences of immune cells in 8-week-old mice were detected by cell counter and flow cytometry. Two groups of mouse Naïve CD4+T cells were induced to differentiate into iTreg cells to observe the effect of PI16 on the differentiation and proliferation of iTreg cells, CD4+CD25+Treg and CD4+CD25- effector T cells (Teff) were selected and co-cultured with antigen presenting cells (APC) to observe the effect of PI16 on the inhibitory ability of Treg cells in vitro. The effects of directed knockout of PI16 in Treg cells on inflammatory symptoms, histopathological changes and immune cell expression in mice with enteritis and autoimmune arthritis were observed by constructing the model of antigen-induced arthritis (AIA) and colitis induced by dextran sulfate sodium salt (DSS). RESULTS: We identified peptidase inhibitor 16 (PI16) as a negative regulator of Treg cells. Our findings demonstrate that conditional knock-out of PI16 in Tregs significantly enhances their differentiation and suppressive functions. The conditional knockout of the PI16 gene resulted in a significantly higher abundance of Foxp3 expression (35.12 ± 5.71% vs. 20.00 ± 1.61%, p = 0.034) in iTreg cells induced in vitro compared to wild-type mice. Mice with Treg cell-specific PI16 ablation are protected from autoimmune arthritis (AIA) and dextran sulfate sodium (DSS)-induced colitis development. The AIA model of PI16CKO is characterized by the reduction of joint structure and the attenuation of synovial inflammation and in DSS-induced colitis model, conditional knockout of the PI16 reduce intestinal structural damage. Additionally, we found that the deletion of the PI16 gene in Treg can increase the proportion of Treg (1.46 ± 0.14% vs. 0.64 ± 0.07%, p < 0.0001) and decrease the proportion of Th17 (1.00 ± 0.12% vs. 3.84 ± 0.64%, p = 0.001). This change will enhance the shift of Th17/Treg toward Treg cells in AIA arthritis model (0.71 ± 0.06% vs. 8.07 ± 1.98%, p = 0.003). In DSS-induced colitis model of PI16CKO, the proportion of Treg in spleen was significantly increased (1.40 ± 0.15% vs. 0.50 ± 0.11%, p = 0.003), Th17 (2.18 ± 0.55% vs. 6.42 ± 1.47%, p = 0.017), Th1 (3.42 ± 0.19% vs. 6.59 ± 1.28%, p = 0.028) and Th2 (1.52 ± 0.27% vs. 2.76 ± 0.38%, p = 0.018) in spleen was significantly decreased and the Th17/Treg balance swift toward Treg cells (1.44 ± 0.50% vs. 24.09 ± 7.18%, p = 0.012). CONCLUSION: PI16 plays an essential role in inhibiting Treg cell differentiation and function. Conditional knock out PI16 gene in Treg can promote the Treg/Th17 balance towards Treg dominance, thereby alleviating the condition. Targeting PI16 may facilitate Treg cell-based therapies for preventing autoimmune diseases and inflammatory diseases. The research provides us with novel insights and future research avenues for the treatment of autoimmune diseases, particularly arthritis and colitis.


Assuntos
Artrite , Doenças Autoimunes , Colite , Animais , Camundongos , Artrite/metabolismo , Artrite/patologia , Doenças Autoimunes/metabolismo , Diferenciação Celular , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Células Th17
9.
Eur Rev Med Pharmacol Sci ; 28(6): 2340-2350, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567597

RESUMO

OBJECTIVE: The relationship between inflammatory markers and survival in many cancers has been investigated previously. Inflammatory markers may also offer the possibility of predicting surveillance in patients with malignant mesothelioma. Our study seeks to enhance comprehension of how variables such as the nutritional status and inflammation indices of malignant mesothelioma patients impact the disease's progression and prognosis. PATIENTS AND METHODS: This study included patients who were treated at the Erciyes University Medical Oncology Clinic between 2010 and 2022 and diagnosed with malignant mesothelioma. This is a retrospective single-center cohort study. Receiver Operating Characteristic (ROC) analysis was applied to determine the inflammation markers' optimal cut-off values with high sensitivity and specificity. Patients were categorized based on these values. The differences in overall survival (OS) and progression-free survival (PFS) between categorized groups were assessed using Log-rank curves and Kaplan-Meier tests. Multivariate analysis was performed using Cox regression analysis on statistically significant data. The relationship between inflammation markers and malignant mesothelioma survival was evaluated. RESULTS: There are 115 patients in this study. Pre-treatment high neutrophil to lymphocyte ratio (NLR) (HR: 1.34, 95% CI: 1.12-2.83, p=0.04), high pan-immune inflammation value (PIIV) (HR: 2.01, 95% CI: 1.32-4.79, p=0.03), and high systemic inflammation response index (SIRI) (HR: 1.34, 95% CI: 1.2-2.78, p=0.04) were associated with poor OS. Conversely, high advanced lung cancer inflammation index (ALI) (HR: 0.73, 95% CI: 0.53-0.84, p=0.03) and high hemoglobin-albumin-lymphocyte and platelet (HALP) (HR: 0.67, 95% CI: 0.23-0.78, p=0.02) were associated with favorable survival. CONCLUSIONS: Our study investigated the prognostic value of various inflammation markers in malignant mesothelioma patients and suggests that composite formulas like NLR, PIIV, SIRI, ALI, and HALP that incorporate CBC cells and nutritional parameters like albumin, height, and weight could more consistently and accurately predict malignant mesothelioma prognosis.


Assuntos
Mesotelioma Maligno , Humanos , Prognóstico , Mesotelioma Maligno/patologia , Estudos Retrospectivos , Estudos de Coortes , Linfócitos/patologia , Albuminas , Inflamação/patologia , Neutrófilos/patologia
10.
Ren Fail ; 46(1): 2316885, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38561236

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) infection is well established as a systemic disease including kidney damage. The entry point into the renal cell remains the angiotensin-converting enzyme 2 (ACE-2) receptor and the spectrum of renal lesions is broad, with a clear predominance of structural and functional tubular lesions. The most common form of glomerular injury is collapsing glomerulopathy (CG), which is strongly associated with apolipoprotein L1(APOL-1) risk variants. These acute lesions, which are secondary to the direct or indirect effects of SARS-CoV-2, can progress to chronicity and are specific to long COVID-19 in the absence of any other cause. Residual inflammation associated with SARS-CoV-2 infection, in addition to acute kidney injury (AKI) as a transitional state with or without severe histological lesions, may be responsible for greater kidney function decline in mild-to-moderate COVID-19. This review discusses the evidence for renal histological markers of chronicity in COVID-19 patients and triggers of low-grade inflammation that may explain the decline in kidney function in the post-COVID-19 period.


Assuntos
Injúria Renal Aguda , COVID-19 , Humanos , COVID-19/complicações , SARS-CoV-2 , Síndrome Pós-COVID-19 Aguda , Rim/patologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Inflamação/patologia
11.
Microb Biotechnol ; 17(4): e14462, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593310

RESUMO

Alzheimer's disease is a complex and progressive condition that affects essential neurological functions such as memory and reasoning. In the brain, neuronal loss, synaptic dysfunction, proteinopathy, neurofibrillary tangles, and neuroinflammation are the hallmarks of Alzheimer's disease pathophysiology. In addition, recent evidence has highlighted that microbes, whether commensal or pathogenic, also have the ability to interact with their host and to regulate its immune system, therefore participating in the exchanges that lead to peripheral inflammation and neuropathology. Because of this intimate relationship, bacteria, viruses, fungi, and protozoa have been implicated in the development of Alzheimer's disease. Here, we bring together current and most recent evidence of the role of microbes in Alzheimer's disease, raising burning questions that need to be addressed to guide therapeutic approaches and potential prophylactic strategies.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Emaranhados Neurofibrilares/patologia , Encéfalo , Inflamação/patologia
12.
PLoS One ; 19(4): e0300203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564643

RESUMO

Recent studies highlighted the role of astrocytes in neuroinflammatory diseases, particularly multiple sclerosis, interacting closely with other CNS components but also with the immune cells. However, due to the difficulty in obtaining human astrocytes, their role in these pathologies is still unclear. In this study we develop an astrocyte in vitro model to evaluate their role in multiple sclerosis after being treated with CSF isolated from both healthy and MS diagnosed patients. Gene expression and ELISA assays reveal that several pro-inflammatory markers IL-1ß, TNF-α and IL-6, were significantly downregulated in astrocytes treated with MS-CSF. In contrast, neurotrophic survival, and growth factors, and GFAP, BDNF, GDNF and VEGF, were markedly elevated upon the same treatment. In summary, this study supports the notion of the astrocyte involvement in MS. The results reveal the neuroprotective role of astrocyte in MS pathogenicity by suppressing excessive inflammation and increasing the expression of tropic factors.


Assuntos
Esclerose Múltipla , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Esclerose Múltipla/patologia , Astrócitos/metabolismo , Inflamação/patologia , Fator de Necrose Tumoral alfa/metabolismo
13.
Ann Med ; 56(1): 2337729, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38569199

RESUMO

BACKGROUND: Many studies have explored the value of the systemic inflammation response index (SIRI) in predicting the prognosis of patients with breast cancer (BC); however, their findings remain controversial. Consequently, we performed the present meta-analysis to accurately identify the role of SIRI in predicting BC prognosis. METHODS: PubMed, Embase, Cochrane Library, and Web of Science databases were comprehensively searched between their inception and February 10, 2024. The significance of SIRI in predicting overall survival (OS) and disease-free survival (DFS) in BC patients was analyzed by calculating pooled hazard ratios (HRs) and corresponding 95% confidence intervals (CIs). RESULTS: Eight articles involving 2,997 patients with BC were enrolled in the present study. According to our combined analysis, a higher SIRI was markedly associated with dismal OS (HR = 2.43, 95%CI = 1.42-4.15, p < 0.001) but not poor DFS (HR = 2.59, 95%CI = 0.81-8.24, p = 0.107) in patients with BC. Moreover, based on the pooled results, a high SIRI was significantly related to T3-T4 stage (OR = 1.73, 95%CI = 1.40-2.14, p < 0.001), N1-N3 stage (OR = 1.61, 95%CI = 1.37-1.91, p < 0.001), TNM stage III (OR = 1.63, 95%CI = 1.34-1.98, p < 0.001), and poor differentiation (OR = 1.25, 95%CI = 1.02-1.52, p = 0.028). CONCLUSION: According to our results, a high SIRI significantly predicted poor OS in patients with BC. Furthermore, elevated SIRI was also remarkably related to increased tumor size and later BC tumor stage. The SIRI can serve as a novel prognostic biomarker for patients with BC.


Based on our knowledge, this study is the first meta-analysis to explore value of SIRI in predicting BC prognosis.According to our results, a high SIRI significantly predicted the dismal OS in BC patients.SIRI can serve as the novel prognostic biomarker for BC patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Prognóstico , Modelos de Riscos Proporcionais , Intervalo Livre de Doença , Inflamação/patologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-38571695

RESUMO

In rheumatoid arthritis, dysregulated cytokine signaling has been implicated as a primary factor in chronic inflammation. Many antirheumatic and biological therapies are used to suppress joint inflammation, but despite these advances, effectiveness is not universal, and delivery is often at high doses, which can predispose patients to significant off-target effects. During chronic inflammation, the inappropriate regulation of signaling factors by macrophages accelerates progression of disease by driving an imbalance of inflammatory cytokines, making macrophages an ideal cellular target. To develop a macrophage-based therapy to treat chronic inflammation, we engineered a novel induced pluripotent stem cell (iPSC)-derived macrophage capable of delivering soluble TNF receptor 1 (TNFR1), an anti-inflammatory biologic inhibitor of tumor necrosis factor alpha (TNF-α), in an auto-regulated manner in response to TNF-α. Murine iPSCs were differentiated into macrophages (iMACs) over a 17-day optimized protocol with continued successful differentiation confirmed at key timepoints. Varying inflammatory and immunomodulatory stimuli demonstrated traditional macrophage function and phenotypes. In response to TNF-α, therapeutic iMACs produced high levels of sTNFR1 in an autoregulated manner, which inhibited inflammatory signaling. This self-regulating iMAC system demonstrated the potential for macrophage-based drug delivery as a novel therapeutic approach for a variety of chronic inflammatory diseases.


Assuntos
Produtos Biológicos , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Células-Tronco Pluripotentes Induzidas/patologia , Citocinas/farmacologia , Macrófagos , Inflamação/patologia , Anti-Inflamatórios/farmacologia , Produtos Biológicos/uso terapêutico
15.
Breast Cancer Res ; 26(1): 61, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594742

RESUMO

BACKGROUND: Breast cancers exhibit considerable heterogeneity in their biology, immunology, and prognosis. Currently, no validated, serum protein-based tools are available to evaluate the prognosis of patients with early breast cancer. METHODS: The study population consisted of 521 early-stage breast cancer patients with a median follow-up of 8.9 years. Additionally, 61 patients with breast fibroadenoma or atypical ductal hyperplasia were included as controls. We used a proximity extension assay to measure the preoperative serum levels of 92 proteins associated with inflammatory and immune response processes. The invasive cancers were randomly split into discovery (n = 413) and validation (n = 108) cohorts for the statistical analyses. RESULTS: Using LASSO regression, we identified a nine-protein signature (CCL8, CCL23, CCL28, CSCL10, S100A12, IL10, IL10RB, STAMPB2, and TNFß) that predicted various survival endpoints more accurately than traditional prognostic factors. In the time-dependent analyses, the prognostic power of the model remained rather stable over time. We also developed and validated a 17-protein model with the potential to differentiate benign breast lesions from malignant lesions (Wilcoxon p < 2.2*10- 16; AUC 0.94). CONCLUSIONS: Inflammation and immunity-related serum proteins have the potential to rise above the classical prognostic factors of early-stage breast cancer. They may also help to distinguish benign from malignant breast lesions.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Mama/patologia , Prognóstico , Inflamação/patologia , Proteínas Sanguíneas
16.
Sci Transl Med ; 16(742): eadk3506, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598614

RESUMO

It has been presumed that rheumatoid arthritis (RA) joint pain is related to inflammation in the synovium; however, recent studies reveal that pain scores in patients do not correlate with synovial inflammation. We developed a machine-learning approach (graph-based gene expression module identification or GbGMI) to identify an 815-gene expression module associated with pain in synovial biopsy samples from patients with established RA who had limited synovial inflammation at arthroplasty. We then validated this finding in an independent cohort of synovial biopsy samples from patients who had early untreated RA with little inflammation. Single-cell RNA sequencing analyses indicated that most of these 815 genes were most robustly expressed by lining layer synovial fibroblasts. Receptor-ligand interaction analysis predicted cross-talk between human lining layer fibroblasts and human dorsal root ganglion neurons expressing calcitonin gene-related peptide (CGRP+). Both RA synovial fibroblast culture supernatant and netrin-4, which is abundantly expressed by lining fibroblasts and was within the GbGMI-identified pain-associated gene module, increased the branching of pain-sensitive murine CGRP+ dorsal root ganglion neurons in vitro. Imaging of solvent-cleared synovial tissue with little inflammation from humans with RA revealed CGRP+ pain-sensing neurons encasing blood vessels growing into synovial hypertrophic papilla. Together, these findings support a model whereby synovial lining fibroblasts express genes associated with pain that enhance the growth of pain-sensing neurons into regions of synovial hypertrophy in RA.


Assuntos
Artrite Reumatoide , Peptídeo Relacionado com Gene de Calcitonina , Humanos , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Artrite Reumatoide/complicações , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Membrana Sinovial/patologia , Inflamação/patologia , Fibroblastos/patologia , Dor/metabolismo , Expressão Gênica , Células Cultivadas
17.
Immunity ; 57(4): 832-834, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599173

RESUMO

IL-23 activates pathogenic Th17 cells to drive inflammatory disease at barrier surfaces. Kim et al. now identify oral epithelial cells as the critical producers of IL-23 in human and mouse periodontitis, linking microbial dysbiosis to non-hematopoietic regulation of IL-17-associated inflammation.


Assuntos
Inflamação , Periodontite , Humanos , Animais , Camundongos , Inflamação/patologia , Células Epiteliais/patologia , Interleucina-23 , Células Th17/patologia , Disbiose
18.
Curr Med Sci ; 44(2): 355-368, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570439

RESUMO

OBJECTIVE: Osteoarthritis (OA) is a degenerative joint disorder characterized by the gradual degradation of joint cartilage and local inflammation. This study aimed to investigate the anti-OA effect of scutellarein (SCU), a single-unit flavonoid compound obtained from Scutellaria barbata D. Don, in rats. METHODS: The extracted rat chondrocytes were treated with SCU and IL-1ß. The chondrocytes were divided into control group, IL-1ß group, IL-1ß+SCU 50 µmol/L group, and IL-1ß+SCU 100 µmol/L group. Morphology of rat chondrocytes was observed by toluidine blue and safranin O staining. CCK-8 method was used to detect the cytotoxicity of SCU. ELISA, qRT-PCR, Western blotting, immunofluorescence, SAß-gal staining, flow cytometry, and bioinformatics analysis were applied to evaluate the effect of SCU on rat chondrocytes under IL-1ß intervention. Additionally, anterior cruciate ligament transection (ACL-T) was used to establish a rat OA model. Histological changes were detected by safranin O/fast green, hematoxylin-eosin (HE) staining, and immunohistochemistry. RESULTS: SCU protected cartilage and exhibited anti-inflammatory effects via multiple mechanisms. Specifically, it could enhance the synthesis of extracellular matrix in cartilage cells and inhibit its degradation. In addition, SCU partially inhibited the nuclear factor kappa-B/mitogen-activated protein kinase (NF-κB/MAPK) pathway, thereby reducing inflammatory cytokine production in the joint cartilage. Furthermore, SCU significantly reduced IL-1ß-induced apoptosis and senescence in rat chondrocytes, further highlighting its potential role in OA treatment. In vivo experiments revealed that SCU (at a dose of 50 mg/kg) administered for 2 months could significantly delay the progression of cartilage damage, which was reflected in a lower Osteoarthritis Research Society International (OARSI) score, and reduced expression of matrix metalloproteinase 13 (MMP13) in cartilage. CONCLUSION: SCU is effective in the therapeutic management of OA and could serve as a potential candidate for future clinical drug therapy for OA.


Assuntos
Apigenina , Condrócitos , Osteoartrite , Ratos , Animais , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/patologia , Cartilagem
19.
Biochem Biophys Res Commun ; 710: 149896, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604072

RESUMO

Pain is a widespread motivation for seeking healthcare and stands as a substantial global public health concern. Despite comprehensive investigations into the mechanisms of pain sensitization induced by inflammation, efficacious treatments options remain scarce. Neutrophil extracellular traps (NETs) have been associated with the progression and tissue damage of diverse inflammatory diseases. This study aims to explore the impact of NETs on the progression of inflammatory pain and explore potential therapeutic approaches. Initially, we observed neutrophil infiltration and the formation of NETs in the left hind paw of mice with inflammatory pain induced by complete Freund's adjuvant (CFA). Furthermore, we employed the peptidyl arginine deiminase 4 (PAD4) inhibitor Cl-amidine (diluted at 50 mg/kg in saline, administered via tail vein injection once daily for three days) to impede NETs formation and administered DNase1 (diluted at 10 mg/kg in saline, once daily for three days) to break down NETs. We investigated the pathological importance of peripheral NETs formation in inflammatory pain and its influence on the activation of spinal dorsal horn microglia. The findings indicate that neutrophils infiltrating locally generate NETs, leading to an increased release of inflammatory mediators that worsen peripheral inflammatory reactions. Consequently, this results in the transmission of more harmful peripheral stimuli to the spinal cord, triggering microglial activation and NF-κB phosphorylation, thereby escalating neuroinflammation and fostering pain sensitization. Suppression of peripheral NETs can mitigate peripheral inflammation in mice with inflammatory pain, reverse mechanical and thermal hypersensitivity by suppressing microglial activation in the spinal cord, ultimately diminishing inflammatory pain. In conclusion, these discoveries propose that obstructing or intervening with NETs introduces a novel therapeutic avenue for addressing inflammatory pain.


Assuntos
Armadilhas Extracelulares , Camundongos , Animais , Dor/tratamento farmacológico , Inflamação/patologia , Neutrófilos/patologia , Corno Dorsal da Medula Espinal
20.
Medicine (Baltimore) ; 103(16): e37726, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640334

RESUMO

We aimed to determine the prognostic values of the neutrophil-lymphocyte ratio, platelet-to-lymphocyte ratio, systemic immune-inflammation index, body mass index, and prognostic nutritional index scores in patients with high-grade glioma. This was a retrospective observational case series. Between 2015 and 2020, 79 patients with high-grade gliomas 2 oncology centers were included in our study. All patients (n = 79) had high-grade glial tumors and were treated with RT. Sixty-nine (87.3%) patients died, and the median 2 years overall survival was 12.7 months. Recurrence was observed in 25 (31.6%) patients at the end of the treatment. The median recurrence free survival was 24.4 months. There was no significant correlation between systemic inflammation indicators and survival parameters for OS and RFS. Only a marginally significant association between the neutrophil-lymphocyte ratio and RFS was found. Systemic inflammatory parameters and outcomes were not significantly correlated in patients with high-grade gliomas.


Assuntos
Glioma , Linfócitos , Humanos , Prognóstico , Linfócitos/patologia , Estudos Retrospectivos , Glioma/patologia , Neutrófilos/patologia , Inflamação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...